热线电话:

厦门莫格电气自动化有限公司

主营:PLC可编程控制器模块,DCS卡件,ES...

商铺首页 > 新闻动态 > 0190-09454
厦门莫格电气自动化有限公司
8
企业等级: 普通会员
经营模式:
所在地区: 福建 厦门
联系卖家:    QQ在线咨询1982497648
手机号码:
公司官网:
公司地址:

0190-09454

发布时间:2019-09-02 06:31:41        

APPLIED MATERIALS   0190-09454

 
  摘要
  目前主流的基于浮栅闪存技术的非易失性存储器(NVM)技术有望成为未来几年的参考技术。但是,闪存本身固有的技术和物理局限性使其很难再缩小技术节点。在这种环境下,业界试图利用新材料和新概念发明一种更好的存储器技术,以替代闪存技术,更有效地缩小存储器,提高存储性能。这篇文章将分析新的主要的基于无机材料的非易失性存储器技术,如铁电存储器 (FeRAM)、磁阻存储器(MRAM)和相变存储器(PCM),以及主要的基于铁电或导电开关聚合物等有机材料的创新存储器概念。***后,我们***探讨相变存储器技术,因为该技术***有可能成为下一代非易失性存储器技术,同时我们将分析相变存储器技术的主要特性和***新的发展状况。
  前言
  在高速成长的非易失性存储器(NVM)市场的推动下,十年来,世界上出现了几项具有突破性的存储器技术,使业界标准技术被淘汰出局,并扩大了闪存技术的应用领域[1]。业内广泛接受的观点是,任何一项技术如果取得成功,就会在未来十年内变为产品。目前,业界对两大类全新的非易失性存储器进行了可行性调研,其中一类是基于无机材料的存储器技术,如铁电存储器(FeRAM)、磁阻存储器(MRAM)或相变存储器(PCM),另一类存储器技术则基于有机材料,铁电或导电开关聚合物。值得注意的是,眼看这个十年就要结束,在这些接替闪存的非易失性存储器当中,只有相变存储器具备进入广阔市场的能力表现,被视为下一个十年的主流存储器技术。
  替代闪存的非易失性存储器
  在目前已调研的两大类新的非易失性存储器技术中,基于铁电或导电开关聚合体的有机材料的存储器技术还不成熟,处于研发阶段。某些从事这类存储器材料研究的研发小组开始认为,这个概念永远都不会变成真正的产品。事实上,使这些概念符合标准CMOS集成要求及其制造温度,还需要解决几个似乎难以逾越的挑战。另一方面,业界对基于无机材料的新非易失性存储器概念的调研时间比较长,并在过去几年发布了几个产品原型。
  早在上个世纪90年代就出现了FeRAM技术概念。虽然在研究过程出现过很多与新材料和制造模块有关的技术难题,但是,经过十年的努力,即便固有的制程缩小限制,技术节点远远高于闪存,铁电存储器现在还是实现了商业化。这个存储器概念仍然使用能够被电场极化的铁电材料。温度在居里点以下时,立方体形状出现晶格变形,此时铁电体发生极化;温度在居里点以上时,铁电材料变成顺电相。到目前为止,业界已提出多种FeRAM单元结构(如图1所示),这些结构属于两种方法体系,一种是把铁电材料集成到一个单独的存储元件内,即铁电电容器内(在双晶体管/双电容(2T2C)和单晶体管/单电容(1T1C)两种元件内集成铁电材料的方法)[2],另一种是把铁电材料集成到选择元件内,即铁电场效应晶体管[3]内。所有的FeRAM架构都具有访存速度快和真证的随机访问所有存储单元的优点。今天,FeRAM技术研发的主攻方向是130nm制程的64Mb存储器[4]。
图1 – FeRAM单元架构方案
  多年来,磁隧道结(MTJ)存储单元(如图2所示)一直是MRAM研发人员的主要研发工作[5],MTJ由一个晶体管和一个电阻组成(1T/1R)。这些技术是利用隧道结与磁阻材料整合产生的特殊效应:当施加一个磁场时,电阻就会发生变化。访存速度极快的无损性读取性能是确保高性能、读写次数相同和低功耗操作的前提。MRAM的主要缺点是该技术固有的写操作电流过高和技术节点缩小受限。为了克服这两大制约因素,业界***近提出了自旋转移矩RAM(SPRAM)解决方案[6],这项创新技术是利用自旋转换矩引起的电***应式开关效应。尽管这一创新方法在一定程度上解决了MRAM的一些常见问题,但是还有很多挑战等待研究人员克服(例如:自读扰动、写次数、单元集成等),今天,MRAM的制造只局限于4Mb阵列180nm制程的产品[7]。
图2 – 采用MTJ 1T1R方法的MRAM单元架构[5]
  相变存储器
  PCM是***好的闪存替代技术,能够涵盖不同的非易失性存储器应用领域,满足高性能和高密度两种应用要求。PCM利用温度变化引起硫系合金(Ge2Sb2Te5)相态逆变的特性。 基本单元结构由一个晶体管和一个电阻构成(1T/1R),利用电流引起的焦耳热效应(图3-a)对单元进行写操作,通过检测非晶相态和多晶相态之间的电阻变化读取存储单元。虽然这项技术***早可追溯到上个世纪70年代,但是直到***近人们才重新尝试将其用于非易失性存储器[9](采用相变合金的光电存储设备取得商业成功,也促进了人们发现性能更优异的相变材料结构的研究活动),相变存储器证明其具有达到制造成熟度的能力[10]。我们在本文后面的表格中比较了相变存储器与其它的成熟的非易失性存储器技术。 融非易失性存储器和DRAM两大存储器的优点于一身,PCM的新特性对新型应用很有吸引力,同时还是一项具有连续性和突破性的存储器技术。从应用角度看,PCM可用于所有的存储器系统,特别适用于消费电子、计算机、通信三合一电子设备的存储器系统 [11]。具体地讲,在无线系统中,PCM可用作代码执行存储器;PCM可用作可改写只读存储器,保存处理频率***高的数据结构以外的全部数据结构,在固态存储子系统中,保存经常访问的页面;在立即处理数据时,保存更容易管理的数据元素;计算机平台可利用其非易失性。
图3a - PCM原型结构的被写存储单元的自加热示意图[8]
  PCM的技术发展路线如图4所示。业界利用180nm技术节点开发出了***芯片测试载具,并验证了此项技术的可行性[12]。BJT选定的单元被高性能和高密度存储器选用,因为单元尺寸可以是~5F2 (其中F是存储单元半节距***小值)。虽然单元尺寸较大(~20F2),但是集成存储器只需在逻辑制程中增加很少的掩模,成本优势十分突出,因此,MOS选定的单元适用于系统芯片或嵌入式应用[13]。
图4 - PCM技术发展路线图
  英特尔和意法半导体开发出一款叫做Alverstone的128Mb的90nm相变存储器,该产品现已实现商业化[14]。另外一款 45nm 1Gb PCM产品现已进入***研发阶段,该产品设计的单元尺寸为5.5F2 (图3-b) [15]。
图3 b - 45nm技术PCM阵列的截面图[15]
  PCM技术研发将沿着不同的路线并行前进。主流的开发路线将是采用BJT选定的单元,沿着光刻技术发展路线,缩小现有技术架构,提供***小的单元尺寸。除广泛使用的 Ge2Sb2Te5以外,利用新的硫系合金是另外一个重要的研究领域,因为这可能会开创全新的应用领域;结晶速度极快或结晶温度更高的合金将会更有吸引力[16]。
  在存储器架构方面,一条研究主线将是利用真正的交叉点阵列,实现一层以上的存储器叠层。通过在后工序中集成p-n结或肖特基二极管作为选择元件,业界已经提出了不同的解决方法[17-18]。硫系材料特别适合这种堆叠方法,因为在硫系材料堆叠后,其相变特性(像Ge2Sb2Te5)可以构成存储器元件,同时其电子开关特性(像OTS)构成选择元件[19](图5)。在这种情况下,单元尺寸可以达到4F2,位大小是单元尺寸的几分之一,具体大小取决于叠层数量[19],这项技术适用于高密度存储器,特别是存储应用。
图5 - 一层采用CMOS技术全集成的交叉点PCM阵列
  总之,现有的技术成熟度,技术节点缩小能力,更广泛的应用范围,而且新材料和新架构可进一步扩大应用范围,这一切为相变存储器技术未来十年在存储器市场发挥重要作用铺平了道路。
 
 
 
  软误差率(SER)问题是于上个世纪70年代后期作为一项存储器数据课题而受到人们的广泛关注的,当时DRAM开始呈现出随机故障的征兆。随着工艺几何尺寸的不断缩小,引起失调所需的临界电荷的减少速度要比存储单元中的电荷聚集区的减小速度快得多。这意味着: 当采用诸如90nm这样的较小工艺几何尺寸时,软误差是一个更加值得关注的问题,并需要采取进一步的措施来确保软误差率被维持在一个可以接受的水平上。
  SER的倾向和含意
  工艺尺寸的压缩已经是实现行业生存的主要工具,而且对增加密度、改善性能和降低成本起着重要的推动作用。随着器件加工工艺向深亚微米门信号宽度(0.25mm→ 90nm?)迈进,存储器产品的单元尺寸继续缩小,从而导致电压越来越低(5V→3.3V→1.8V……)以及存储单元内部电容的减小(10fF→5fF……)。由于电容的减小,存储器件中的临界电荷量(一个存储单元用于保存数据所需的***小电荷量)继续缩小,因而使得它们对SER的自然抵御能力下降。这反过来又意味着能量低得多的a粒子或宇宙射线都有可能对存储单元形成干扰。
  系统级的含意和重要性
  软误差是以FIT来衡量的。FIT率只不过是10亿个器件操作小时中所出现的故障数。1000 FIT对应于一个约144年的MTTF(平均无故障时间)。为了对软误差的重要性有所了解,我们不妨来看一下它们在典型存储应用中所具有的潜在影响的一些实例。比如,一部采用了一个软误差率为1000 FIT/Mbit的4Mbit低功率存储器的蜂窝电话将很可能每28年出现一次软误差。而一个采用了软误差率为600 FIT/Mbit的100Gbits同步SRAM的标准***路由器则有可能每17个小时出现一次错误。此外,软误差之所以重要还在于目前其FIT率是硬可靠性故障的典型FIT率的10倍以上。显然,对于蜂窝电话而言软误差并无大碍,但那些采用大量存储器的系统则有可能受到严重影响。
  SER的根源
  现在,您对软误差已经有了一个总的概念,下面对这些引发软误差的不同根源的机理逐个做一下简单的探讨。
  α粒子的影响
  半导体器件封装所采用的压模化合物中有可能含有诸如Th232 和U238等杂质,这些物质往往会随着时间的推移发生衰变。这些杂质会释放出能量范围为2"9MeV(百万电子伏特)的α粒子。在硅材料中,形成电子空穴对所需的能量为3.6eV。这就意味着α粒子有可能生成约106个电子空穴对。耗尽区中的电场将导致电荷漂移,从而使晶体管承受电流扰动。如果电荷转移量在0或1的状态下超过了存储于存储单元中的临界电荷量(QCRIT),则存储数据会发生翻转。
  宇宙射线的影响
  高能量的宇宙射线和太阳粒子会与高空大气层起反应。当发生这种情况时,将产生高能量的质子和中子。中子尤其难对付,因为它们能够渗透到大多数人造结构中(例如,中子能够轻易地穿透5英尺厚的混凝土)。这种影响的强度会随着所处的纬度和海拔高度的不同而变化。在伦敦,该影响要比在赤道地区严重1.2倍。在丹佛,由于其地处高海拔,因此这种影响要比地处海平面的旧金山强三倍。而在飞机上,这种影响将是地面上的100"800倍。
  高能量中子的能量范围为10"800MeV,而且,由于它们不带电荷,所以与硅材料的反应不同于α粒子。事实上,中子必须轰击硅原子核才会引起软误差。这种碰撞有可能产生α粒子及其他质量较重的离子,从而生成电子空穴对,但这种电子空穴所具有的能量比来自压模化合物的典型α粒子所具有的能量高。
  热中子的影响
  热中子有可能是导致软故障的一个主要根源,它们所具有的能量一般非常低(约25meV)。这些低能量中子很容易被大量存在于BPSG(硼磷硅酸盐玻璃)电介质层当中的B10同位素所俘获。俘获中子将导致一个产生裂变的锂、一个α粒子和一根γ射线。热中子只在存在BPSG的情况下才是一项问题。所以热中子对SER的这一影响可以通过彻底放弃使用B10来抵消。表1为产生软误差根源的比较。
  测量技术
  测量器件对软误差的敏感度有多种方法。一种方法是加速测量,另一种方法涉及系统级测量。测试地点所处的地理位置对于***终获得的数据有着很大的影响。为了***大限度地减小不同公司之间的测量数据差异,并在不同的产品售主之间维持一个公共的基准点,业界采取的标准是让所有的售主公布其调整至纽约市/海平面这一地理位置的SER FIT率。
  加速SER数据测量有两种方法:α粒子加速测试和宇宙射线加速测试。器件对α粒子的敏***可通过在去封头芯片上布设一个钍或铀离子源,并测量某一特定时间内的总失调数以及推断Fit/Mbits的方法来测定。
  上述的两种加速数据测量法是对FIT率的一个合理的近似,但往往夸大了实际的故障率。加速数据可被用作计算一个系统SER测量所需总时间的良好近似。
  另一方面,系统SER测量需要在电路板上布设数以千计的器件,并对系统进行连续监控,以测量所产生的失调的总数。系统SER是α粒子和宇宙射线SER的累积,而且,该数据在很大程度上取决于系统所处的地理位置。消除一个系统中的α粒子-宇宙射线影响的良策之一是在把系统置于数米深的地下(此时宇宙射线的影响可以忽略)的情况下进行数据测量,并随后在高海拔上(此时α粒子的影响完全可以忽略不计)对系统实施监控。
  系统软误差率测量成本相当昂贵,常常由存储器售主从技术(而不是器件)的层面上来进行,旨在缩减成本。
  ***SER
  降低SER的方法分为几类,包括工艺变更(埋层、三层阱等)、电路强化(阻性反馈、在存储节点上设置较高的电容、较高的驱动电压等)、设计强化(冗余等)和系统级变更。
  系统级对策
  在系统级上,可根据读操作来进行误差检测和校正,并通过使SRAM的延迟(等待时间)略有增加的方法来***SRAM的SER上升。这样可对数据进行一位误差校正并报告多位误差。还可以借助系统和存储器架构设计来实现某些改进。存储器拓扑位图可以按照使一个实际的多位事件在一个字节中导致一个多位或一位误差的方式来构成。ECC在校正一位误差方面是非常有效的,但采用它同时也意味着芯片面积将至少增加20%。
  器件工艺/封装级对策
  从器件设计的角度来看,***SER并增强器件对SER的抵御能力的途径之一是增加存储单元中所存储的临界电荷量。人们注意到,PMOS门限电压可减少存储单元的***时间,这间接起到了提高SER抵御能力的作用。另外,在发生软误差期间所产生的电荷可利用埋入式结点(三层阱架构)来驱散,以增加远离***性区的再结合。这将生成一个与NMOS耗尽层方向相反的电场,并强制电荷进入衬底。然而,这种三层阱架构只是在辐射发生于NMOS区域中的时候才能起到一定的补救作用。
  结语
  随着加工工艺尺寸的日益缩小,“软”误差对存储器件的影响已经从原先的“无关紧要”演变成为系统设计中需要加以认真考虑的重要事项。赛普拉斯等SRAM售主已经在工艺开发和产品设计当中采取了相应的对策,以求***大限度地降低器件对SER的敏感度,并由此将SRAM的应用范围扩展到远远小于90nm的工艺几何尺寸。凭借在系统设计和产品设计水平的正确对策,SRAM仍将是多代工艺中一种可行的存储器解决方案。
免责声明
• 本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们 304108043@qq.com
  • QQ在线咨询1982497648
  • 手机:
  • 联系我时务必告知是在产品网上看到的!

厦门莫格电气自动化有限公司

商铺|诚信档案

地址:

电话:传真:

免责声明:以上信息由会员自行提供,内容的真实性、准确性和合法性由发布会员负责,产品网对此不承担任何责任。产品网不涉及用户间因交易而产生的法律关系及法律纠纷, 纠纷由您自行协商解决。

风险提醒:本网站仅作为用户寻找交易对象,就货物和服务的交易进行协商,以及获取各类与贸易相关的服务信息的平台。为避免产生购买风险,建议您在购买相关产品前务必 确认供应商资质及产品质量。过低的价格、夸张的描述、私人银行账户等都有可能是虚假信息,请采购商谨慎对待,谨防欺诈,对于任何付款行为请您慎重抉择!如您遇到欺诈 等不诚信行为,请您立即与产品网联系,如查证属实,产品网会对该企业商铺做注销处理,但产品网不对您因此造成的损失承担责任!

联系:304108043@qq.com是处理侵权投诉的专用邮箱,在您的合法权益受到侵害时,欢迎您向该邮箱发送邮件,我们会在3个工作日内给您答复,感谢您对我们的关注与支持!

商铺首页 | 公司概况 | 供应信息 | 新闻动态 | 诚信档案 | 联系我们 |

厦门莫格电气自动化有限公司 电话: 传真: 联系人:

地址: 主营产品:PLC可编程控制器模块,DCS卡件,ESD系统卡件,振动监测系统卡件,汽轮机控制系统模块,燃气发电机备件

Copyright © 2025 版权所有: 产品网

免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。产品网对此不承担任何保证责任。

商盟客服

您好,欢迎莅临,欢迎咨询...